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Summary. In this paper I explain why interference fringes should not move when rotating Michel-

son's interferometer. 

         The translational motions of the mirrors can produce rotating effects for these mirrors. When 

the interferometer rotates, the sections of the coherent beams that overlap and interfere, always 

change. Changes in the light beams travel time through the interferometer arms and the rotating 

effects of mirrors produce inverse effects on the fringes. These effects cancel each other out. 
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INTRODUCTION 

 In order to understand and explain the complex phenomena taking place in a Michelson 

interferometer, the behaviour of the components of this device must be carefully analyzed: Mirrors, 

transparent medium, in various situations. The Huygens principle was used to treat reflections and 

refractions. 

 In the reflection case, the result of the process that occurs on a section of the mirror where 

the wavefront struck at a given time, is combined with the result of the process that occurs on the 

adjacent section of the mirror where the incident wavefront struck at the next moment, and so on. 

 If the mirror is at rest, or if the mirror moves on a line contained in its plane, or at normal 

incidence, the mirror sections touched by the incident beam, describe the surface of the mirror 

itself. This surface corresponding to the surface of the mirror reflects light. 

 If the mirror moves differently, the sections "swept" by the incident light beam, although 

they are of the mirror, but at different times and positions, describe a surface that no longer coin-

cides with the surface of the mirror. Therefore, the motion of the mirror can generate rotating 

effect. The incident and reflection angles must be re-evaluated because the rotated surface actually 

reflects light. 

The surfaces of the transparent media also undergo the rotational effect due to their movement, 

but when the light is refracted through them, the incident and refraction angles are re-evaluated, 

respecting the known laws.   

 The rotating effects of the mirrors, given the simultaneous movement with the Earth, bring 

new causes for the movement of the fringes in the case of Michelson-Morley experiment, but in 

the opposite direction, due to the change in the light beams travel time through the arms of the 

interferometer. When rotating the interferometer, the light travel time along the interferometer 

arms changes, as well as the angle between the directions of the interfering beams. After reflections 
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and refractions, the axis of the beams reach the semi-silvered mirror at a different time point, i.e., 

in different positions. 

 However, there are positions of the interferometer for which the light beams travel times 

along its arms, are equal and the beams overlap perfectly. Such a position is presented in this study 

(the interferometer rotated at 45°).Passing this position, rotating the interferometer, the angle be-

tween the light beams that interfere increases. The beams swap their place, thus, the axis of the 

one that reaches the interference area faster, is always on the same side (on the right, for the case 

shown in this paper).The interference zone passes through the same states as before 45°, in which 

the fringes should not move. The same phenomenon occurs at the angles of rotation of the inter-

ferometer of 135°, 225° and 315°. 

 The angles are very important, they appear in calculations and must be expressed according 

to c-speed of light and v - speed of the Earth. 

 Regardless of the medium in which it is located, whether it is driving light or not, the in-

terferometer shows the same thing: the fringes of interference do not move when rotating it. 

 In the excerpt of the paper presented, three positions of the interferometer are selected: at 

0°, 90° and 45° with the corresponding calculations and analyses resulting from why the fringes 

should not move, and offer the possibility of practical verification of the theory exposed. It is 

considered that light is not driven by Earth, so it propagates independently of what the surrounding 

bodies do. 

PART I 

MICHELSON-MORLEY EXPERIMENT ANALYZED AGAINST THE REFERENCE 

SYSTEM CONSIDERED STATIONARY (SYSTEM S) 

I.1 MICHELSON INTERFEROMETER BEFORE ROTATION 

The interferometer, before rotation, is shown simplified in Figure 1. 



                     

                                                                          Fig.1 

Each of its arms has the length 𝒍. From the reference system considered to be stationary (SYSTEM 

S), the interferometer together with the Earth moves to the right at speed v. The light, not being 

driven, propagates independently.  

 The light beam with the plane wavefront (for simplification) is reflected by the semi-sil-

vered mirror L according to the Huygens principle. At the initial moment, the beam touches the 

mirror L in section A emitting circular elementary waves (Fig. 2).  After time θ, the beam touches 

the mirror L in section B.  During this time, the light has travelled the distance cθ and the mirror 

L the distance vθ. The incident beam is reflected by the surface with section AB, so moving the 

interferometer to the right results in a clockwise rotation of the mirror L at a 𝝍angle. All the points 

located between A and B emit elementary waves whose tangent gives the reflected wavefron  



 

                  Fig. 2 The wavefront travels the distance AC and the mirror L, the distance AF. The wavefront succes-

sively touches the mirror L regions, between A and B. These regions determine the reflecting surface with section 

AB. The AE axis of the beam reflected towards the O1 mirror, forms the angle 𝜀 with the L-O1 interferometer arm. 

  The propagation direction of the reflected beam (perpendicular to the front) forms the angle 

𝜺 with the perpendicular to the mirror O1 and: 

  𝜀 = 2𝜓                                                                                                                        (1) 

  because the rotation of the L mirror, as a result of the movement with the 𝝍 angle, causes 

the reflected beam to deviate with the 2𝝍 angle. The 𝝍 angle may be expressed according to the 

α angle: 

  𝜓 = 45 − 𝛼                (Fig.2) 

  𝜀 = 90 − 2𝛼                and then  

  𝑠𝑖𝑛 𝜀 = 𝑠𝑖 𝑛(90 − 2 𝛼  )=𝑐𝑜𝑠2 𝛼 

  From the ABC triangle results: 

𝑡𝑔 𝛼 =
𝐵𝐶

𝐴𝐶
=

𝑐𝜃 − 𝑣𝜃

𝑐𝜃
=   

𝑐 − 𝑣

𝑐
 

  Therefore: 

𝑠𝑖𝑛 𝜀 = 𝑐𝑜𝑠 2 𝛼 =
1 − 𝑡𝑔2𝛼

1 + 𝑡𝑔2𝛼
=

1 − (
𝑐 − 𝑣

𝑐 )
2

1 +  (
𝑐 − 𝑣

𝑐 )
2 =  

𝑐2 − (𝑐 − 𝑣)2

𝑐2  +  (𝑐 − 𝑣)2
             (2) 



If the right-hand component of the speed of light reflected by the L mirror 

would be v, then we should have: 𝑠𝑖𝑛 𝜀 =
𝑣
𝑐
      from the ADE triangle 

 But the wavefront has a different tilt (Fig. 2) and passes neither through 𝐃, nor at a cθ 

distance from A.  Therefore:   

 
𝑐2−(𝑐−𝑣)2

𝑐2 + (𝑐−𝑣)2 >
𝑣

𝑐
 

therefore, the right-hand component of the speed of light reflected by the L mirror is greater than 

v, i.e., greater than the L mirror speed. This component has the value of: 

𝑣’ =  𝑐 ·  𝑠𝑖𝑛 𝜀 =  
𝑐[𝑐2 − (𝑐 − 𝑣)2]

𝑐2  +  (𝑐 − 𝑣)2
                                                                                            (3) 

 The initial hypothesis, that the light is not driven by Earth (therefore neither by the inter-

ferometer), was followed. If the light is considered to be driven, then reflections occur differently. 

The right-hand component of the speed of light could be equal to the speed of the interferometer 

and of the Earth if the light were totally driven by Earth. 

 Applying the principle of Huygens to the reflection on the Mirror O1, which moves on a 

line contained in its plane, ε will also be obtained for the angle of reflection on this mirror. The 

surface reflecting light coincides with the surface of the O1 mirror. After reflecting on the O1 

mirror, the section around point A of the incident beam reaches back to the level of point A, before 

the L mirror (Fig. 3).    

 



                                 Fig. 3 The axis of the beam reflected by the O1 mirror reaches the L-O2 arm of the 

interferometer in point D, before the L mirror, on the right. The beam axis coming from the O2 mirror touches the L 

mirror at distance x against D, on the left.  

The 𝒕𝟏 light travel time on the distance from A to the O1 mirror and back to level A consists of:  

𝒕𝟏
′ = the light travel time on distance A to B; 

𝒕𝟏
′′= the light travel time on distance the distance from B to point A, in D:  

𝑡1= 𝑡1
′ +   𝑡1

′′                                                                                                                (4) 

From the right triangle ABC, can be written: 

   𝑐2𝑡′1
2 = 𝑙2 + 𝑣′²𝑡′1

2                                                                                                  (5)            

Therefore 

𝑡1
′=     

𝑙

√𝑐2−𝑣′2
 =   

𝑙[𝑐2+(𝑐−𝑣)2]

2𝑐2(𝑐−𝑣)
                                                 (6) 

Similarly, 𝒕𝟏 
′′ shall be determined from the BDC triangle congruent to the ABC triangle: 

𝑡1
′′=  

𝑙[𝑐2+(𝑐−𝑣)2]

2𝑐2(𝑐−𝑣)
                                                                                                    (7)                                                                          

Therefore: 

𝑡1 =  𝑡1
′ + 𝑡1

′′ = 
𝑙[𝑐2+(𝑐−𝑣)2]

𝑐2(𝑐−𝑣)
                                                                     (8) 

The 𝒕𝟐 light travel time on L-O2-L distance, is easily calculated: 

               𝑡2 =  
𝑙

𝑐 − 𝑣
+

𝑙

𝑐 + 𝑣
=

2𝑙𝑐

𝑐2 − 𝑣2
                                                                                           (9) 

   

In this situation 𝒕𝟐 is greater than 𝒕𝟏, the difference being:          

 ∆𝑡 = 𝑡2 − 𝑡1 = 2𝑙𝑐

𝑐2−𝑣2 − 𝑙[𝑐2+(𝑐−𝑣)
2

]

𝑐2(𝑐−𝑣)
= 𝑙𝑣

2

𝑐2(𝑐+𝑣)
 

The axis of the light beam coming from O1, undergoes a displacement to the right of the one 

coming from the O2 on the distance x.  

𝑥 = 𝑣′ ·  𝑡1 − 𝑣 · 𝑡2 =
𝑐[𝑐2−(𝑐−𝑣)2]

𝑐2+(𝑐−𝑣)
2  ·  

𝑙[𝑐2+(𝑐−𝑣)2]

𝑐2(𝑐−𝑣)
− 2𝑙𝑐𝑣

𝑐2−𝑣2 = 
𝑙𝑣2

𝑐(𝑐+𝑣)
 

Therefore, before rotation: 



         ∆𝑡    =   
𝑙𝑣2

𝑐2(𝑐+𝑣)
            and               𝑥  =      

𝑙𝑣2

𝑐(𝑐+𝑣)
                       (10) 

and the axis of the light beam that reaches faster (from O1) is deflected to the right against the 

other (from O2).   

 

 

I. 2 THE MICHELSON INTERFEROMETER ROTATED BY 90° 

 

 The interferometer rotated by 90° in a counterclockwise direction is represented in Figure 

4 in the same position as in Figure 1, but with the v direction changed accordingly, for easier 

comparison between the two situations: before and after rotation. The entire dynamic of the phe-

nomenon is rendered in cases where the light reflected by the O2 mirror reaches the center of the 

L mirror to facilitate comparisons. 

 Following the two refractions on the surfaces of the medium with the flat and parallel faces 

of the L mirror (rotated with the angle 𝝍 as an effect of the movement), the light coming out 

towards O2 is parallel to the light entering the L.  

                  

                                                                                Fig. 4 

The center of the L mirror, after reflection on the O2 mirror, will be reached by the section of the 

initial wavefront passing through point A of the L mirror. Point A has the level located at distance 

d, “below” the center of the mirror L. As the light travels the L-O2-L path, the center of the mirror, 

i.e., the C point, moves on the distance d, coming towards the light reflected by O2. (Fig. 5)   



  

                      Fig. 5 The light is emitted in the direction of the L-O2 arm of the interferometer and propagates 

independently on the A-B-C path. Because the light comes perpendicular to the O2 mirror, it is reflected on the 

samepath. While the light travels the distance A-B-C, the mirror L moves on the distance d. 

𝝉𝟐= the light travel time on the A-B-C distance is calculated as follows: 

  𝜏2 = 2𝑙+𝑑
𝑐

                                                                       (11) 

but:   d=v·𝜏2                                                                   (12) 

therefore: 𝜏2 = 2𝑙+𝑣𝜏2
𝑐

 

where 𝝉𝟐 and d become: 

𝜏2 = 2𝑙
𝑐−𝑣

        and            d =
2𝑙𝑣

𝑐−𝑣   
                                                           (13) 

 When the light is reflected on the L mirror, the same effect is observed as before the rota-

tion: the movement of the L mirror has the effect of rotating it with the angle 𝝍 clockwise. Thus, 

towards O1, the light falls under the angle of incidence ε.   (Fig. 6). 

 The first point on the O1 touched by the light coming from L is A, and the last point is B. 

The actual surface reflecting the light together with the O1 mirror, forms the angle 𝝍′. Given the 

movement of the O1 mirror towards the light reflected by L and due to the rotating effect, the 

angle under which the light returns towards the L against the L-O1 arm, will be ε'.  To calculate 

the right-hand component of the light speed reflected by O1, sin ε' is required. 



 

                    Fig. 6  The light travels the CB distance, and the O1 mirror, the EB distance. The AC incident wave-

front successively touches the O1 mirror areas between A and B, determining the reflecting surface with section AB. 

The equal ABC and AVD triangles, lead to: 

ε − 𝜓′ = 𝜀′ + 𝜓′       therefore: 

ε′ = ε − 2𝜓′                                                                             (14)  

  and then: 

𝑠𝑖𝑛 𝜀′ = 𝑠𝑖𝑛(𝜀 − 2𝜓′) = 𝑠𝑖𝑛 𝜀 · 𝑐𝑜𝑠 2𝜓′ − 𝑠𝑖𝑛2𝜓′ · 𝑐𝑜𝑠 𝜀 

From ABE triangle: 

𝑠𝑖𝑛𝜓′ =
𝑣𝜃

𝐴𝐵
 

and from the ABC triangle: 

𝑠𝑖𝑛 (𝜀 − 𝜓′) =
𝑐𝜃

𝐴𝐵
 

By dividing the last two relationships we obtain: 

𝑠𝑖𝑛 𝜓′

𝑠𝑖𝑛(𝜀 − 𝜓′)
=

𝑣

𝑐
 

hence: 

  𝑐 𝑠𝑖𝑛 𝜓′   = 𝑣 𝑠𝑖𝑛 𝜀 · 𝑐𝑜𝑠 𝜓′ − 𝑣 𝑐𝑜𝑠 𝜀 · 𝑠𝑖𝑛𝜓′ 



and by dividing by cos ψ’ 

𝑐 ·  𝑡𝑔 𝜓′ = 𝑣 · 𝑠𝑖𝑛 𝜀 − 𝑣 𝑐𝑜𝑠 𝜀 ·  𝑡𝑔 𝜓′              and 

𝑡𝑔 𝜓′ =
𝑠𝑖𝑛 𝜀

𝑐
𝑣 + 𝑐𝑜𝑠 𝜀

 

In this situation: 

𝑠𝑖𝑛 𝜀′ = 
1−𝑡𝑔2𝜓′

1+𝑡𝑔2𝜓′
· 𝑠𝑖𝑛 𝜀  −  

2𝑡𝑔 𝜓′

1+𝑡𝑔2𝜓′ 𝑐𝑜𝑠 𝜀 =  
 [1−

𝑠𝑖𝑛2𝜀

(
𝑐
𝑣

+𝑐𝑜𝑠 𝜀)2
]𝑠𝑖𝑛𝜀− 

2 𝑠𝑖𝑛 𝜀
𝑐
𝑣

+𝑐𝑜𝑠 𝜀
𝑐𝑜𝑠𝜀

1+
𝑠𝑖𝑛2𝜀

(
𝑐
𝑣

+𝑐𝑜𝑠 𝜀)2

 = 

      =   
(𝑐2−𝑣2)𝑠𝑖𝑛𝜀

𝑐2+𝑣2+2𝑐𝑣·𝑐𝑜𝑠  𝜀
 

        Is further calculated by: 

𝑐𝑜𝑠 𝜀 = √1 − 𝑠𝑖𝑛2𝜀    =  
2𝑐(𝑐−𝑣)

𝑐2+(𝑐−𝑣)2                                                                    (15)                 

therefore: 

𝑠𝑖𝑛 𝜀′ =
𝑐2 − (𝑐 − 𝑣)2

𝑐2 + (𝑐 − 𝑣)2
·

𝑐2 − 𝑣2

𝑐2 + 𝑣2 + 2𝑐𝑣
2𝑐(𝑐 − 𝑣)

𝑐2 + (𝑐 − 𝑣)2

           =  

           =      
(2𝑐𝑣−𝑣2)(𝑐2−𝑣2)

2𝑐4+2𝑐3𝑣−𝑐2𝑣2−2𝑐𝑣3+𝑣4                                          (16) 

The right-hand component of the light speed reflected by the mirror O1 towards L, is: 

𝑣′′ = 𝑐 · 𝑠𝑖𝑛 𝜀′ =
𝑐(2𝑐𝑣 − 𝑣2)(𝑐2 − 𝑣2)

2𝑐4 + 2𝑐3𝑣 − 𝑐2𝑣2 − 2𝑐𝑣3 + 𝑣4                                                                  (17) 

The time needed for the light to travel the distance L-O1-L (Fig. 7) is 𝝉𝟏, consisting of: 

𝝉𝟏
′ = the light travel time on distance AD and 

𝝉𝟏
′′= the light travel time on distance DG 



 

             Fig. 7 While the light travels the AD distance, the O1 mirror moves over the FD distance. The light reflected 

by the O1 mirror passes through point G, located at the level at which the light enters the interferometer (AGB) 

From the ADE triangle:  

𝑐2𝜏′
1
2

= (𝑙 + 𝑑 − 𝑣𝜏1
′ )2 + 𝑣′2

𝜏′
1
2
                                                                       (18)                                           

and from here: 

𝜏1
′ =

𝑙 + 𝑑

√𝑐2 − 𝑣′2 + 𝑣
=

𝑙 +
2𝑙𝑣

𝑐 − 𝑣
2𝑐2(𝑐 − 𝑣)

𝑐2 + (𝑐 − 𝑣)2 + 𝑣
=

𝑙(𝑐 + 𝑣)[𝑐2 + (𝑐 − 𝑣)2]

(𝑐 − 𝑣)(2𝑐3 − 2𝑐𝑣2 + 𝑣3)
                                (19) 

From the DGE triangle:  

𝑐2𝜏′′1
2=(l+d−v𝜏1

′ )2+ 𝑣′′2𝜏′′1
2                                                                 (20)                

therefore:     

𝜏1
′′ =

𝑙 + 𝑑 − 𝑣𝜏1
′

√𝑐2 − 𝑣′′2
 

In this expression: 

√𝑐2 − 𝑣′′2   =
2𝑐3(𝑐2 + 𝑐𝑣 − 𝑣2)

2𝑐4 + 2𝑐3𝑣 − 𝑐2𝑣2 − 2𝑐𝑣3 + 𝑣4
                                                                          (21) 

 



Meaning: 

𝜏1
′′ =

𝑙+ 2𝑙𝑣
𝑐−𝑣−𝑣(𝑙𝑐+𝑙𝑣)[𝑐2+(𝑐−𝑣)

2
]

(𝑐−𝑣)(2𝑐3−2𝑐𝑣2+𝑣3)

2𝑐3(𝑐2+𝑐𝑣−𝑣2)

2𝑐4+2𝑐3𝑣−𝑐2𝑣2−2𝑐𝑣
3

+𝑣4

  = 
𝑙(𝑐+𝑣)(2𝑐4+2𝑐3𝑣−𝑐2𝑣2−2𝑐𝑣3+𝑣4)

𝑐(𝑐2+𝑐𝑣−𝑣2)(2𝑐3−2𝑐𝑣2+𝑣3)
                           (22) 

and:  

𝜏1 = 𝜏1
′ + 𝜏1

′′ =
𝑙(𝑐 + 𝑣)[𝑐2 + (𝑐 − 𝑣)2]

(𝑐 − 𝑣)(2𝑐3 − 2𝑐𝑣2 + 𝑣3)
+    

𝑙(𝑐 + 𝑣)(2𝑐4 + 2𝑐3𝑣 − 𝑐2𝑣2 − 2𝑐𝑣3 + 𝑣4)

𝑐(𝑐2 + 𝑐𝑣 − 𝑣2)(2𝑐3 − 2𝑐𝑣2 + 𝑣3)
= 

=
𝑙(𝑐+𝑣)(2𝑐2−𝑣2)

𝑐(𝑐−𝑣)(𝑐2+𝑐𝑣−𝑣2)
                                                                                               (23) 

The time difference is: 

∆𝜏 = 𝜏2 − 𝜏1 =  
2𝑙

𝑐 − 𝑣
−

𝑙(𝑐 + 𝑣)(2𝑐2 − 𝑣2)

𝑐(𝑐 − 𝑣)(𝑐2 + 𝑐𝑣 − 𝑣2)
=      −

𝑙𝑣2

𝑐(𝑐2 + 𝑐𝑣 − 𝑣2)
 

After rotating the interferometer, 𝝉𝟏 is greater than 𝝉𝟐. The light beam from O2 shall have its axis 

to the right of that coming from O1, at distance 𝒙′. 

𝑥′ = 𝑑 − 𝑣′𝜏1
′  − 𝑣′′𝜏1

′′ = 
2𝑙𝑣

𝑐−𝑣
 – 

𝑐[𝑐2−(𝑐−𝑣)2]

𝑐2+(𝑐−𝑣)2 ·
𝑙(𝑐+𝑣)[𝑐2+(𝑐−𝑣)2]

(𝑐−𝑣)(2𝑐3−2𝑐𝑣2+𝑣3)
 − 

 − 
𝑐(2𝑐𝑣 − 𝑣2)(𝑐2 − 𝑣2)

2𝑐4 + 2𝑐3𝑣 − 𝑐2𝑣2 − 2𝑐𝑣3 + 𝑣4
 ·  

𝑙(𝑐 + 𝑣)(2𝑐4 + 2𝑐3𝑣 − 𝑐2𝑣2 − 2𝑐𝑣3 + 𝑣4)

𝑐(𝑐2 + 𝑐𝑣 − 𝑣2)(2𝑐3 − 2𝑐𝑣2 + 𝑣3)
=      

=
𝑙𝑣2

𝑐2 + 𝑐𝑣 − 𝑣2
 

Therefore, after rotating the interferometer:  

∆𝜏 = −
𝑙𝑣2

𝑐(𝑐2 + 𝑐𝑣 − 𝑣2)
               𝑎𝑛𝑑                 𝑥′ =

𝑙𝑣2

𝑐2 + 𝑐𝑣 − 𝑣2
                                        (24) 

The axis of the beam that reaches faster (from O2 this time) also comes to the right of the other, 

just as before the rotation. The beams have changed between them.  In this case, the relationship 

should be: 

Δτ = 𝝉𝟏– 𝝉𝟐 

Thus, the area of interference after rotating the interferometer, does not change significantly, prac-

tically remaining the same as before because:  

- the time differences are almost insignificant;  



- the movements of the beams are also very similar in value: the light beam that reaches the light 

detector faster comes with the axis always shifted to the right (on the same side), throughout the 

interference zone.   

The situation remains the same for other rotation angles of the interferometer: 180°, 270°. 

The after-rotation situation can be reached from the prior to rotation situation, by performing the 

following operations: 

1. the condition Δτ < 0 shall be met. 

 a. the L-O1-L path shall be increased because 𝝉𝟏–𝒕𝟏>0; the fringes are moving in one 

 direction. 

 b. the L-O2-L path shall be increased less because 𝝉𝟐–𝒕𝟐>0 and 𝝉𝟐–𝒕𝟐< 𝝉𝟏–𝒕𝟏 

 c. the fringes move in the opposite direction to those of a) but less. 

 Thus, at point 1., the fringes move in one direction: that of a). 

2. The O1 mirror shall be rotated properly (clockwise - as shown in this paper). The interference 

fringes move in the opposite direction to the situation described at point 1. 

The causes (plural!) that move the interference fringes when rotating the interferometer give re-

verse effects which practically cancel out. Anyone having a Michelson interferometer, can step-

by-step check the behaviour of the fringes, at each operation indicated at points 1 and 2, and realize 

why the interference fringes practically do not have to move when rotating the interferometer. 

The x, x' displacements and angles between the axis of the reflected beams, all variable during the 

rotation of the interferometer, are so small that it was thought that they are inexistent.  But it is 

precisely these elements that must not be neglected to explain the practical outcome of this im-

portant experiment. 

 

I.3 THE MICHELSON INTERFEROMETER ROTATED BY 45° 

 The interferometer rotated by 45 degrees counterclockwise is shown in Figure 8, with the 

corresponding v direction. In the following calculations, some notations are repeated, but the sizes 

they represent have values that only match this case. 



          

                                                                             Fig. 8 

 In this case, the light beams overlap perfectly (Fig 9), their axis reach the semi-silver mirror 

in the same place, and the interferometer arms travelling times are equal.   

 The detector analyzes the light that reaches it, following reflections, from the region of the 

center of the mirror L. After reflection on the O2 mirror, the center of the L mirror (in C) will be 

reached by the light that enters the interferometer at the distance d "below on figure 9" from the 

center of the mirror L (through A), thus, while the light travels the distance L-O2-L, the center 

of the mirror L meets the light reflected by O2.    

 It is convenient to perform calculations with v* - the Earth speed component parallel to the 

L-O2 or L-O1 arm of the interferometer. 

 𝑣 ∗ =  𝑣
√2

                                                                                                   ( 25 ) 



 

                 Fig. 9 Light beams start from area A of the L mirror. After reflections, they reach back to the center of 

the L mirror, overlapping perfectly. 

 The light travel time on the L-O2-L is:        

𝑡2= 𝑡2
′ + 𝑡2

′′ 

with 𝒕𝟐
′  - towards O2 (on the AB path)    and 𝒕𝟐

′′ – backward to L (on the BC distance) 

c𝑡2
′ =  l + d  +v* 𝑡2

′    where:            𝑡2
′ =   

𝑙 +𝑑

𝑐−𝑣∗
 

Backwards:        c 𝑡2
′′=    l – d + v* 𝑡2

′                    resulting: 

 𝑡2
′′=  

𝑙 𝑐 − 𝑑 𝑐 + 2𝑑 𝑣∗

𝑐 ( 𝑐−𝑣∗)
                                                                                         ( 26 )     

But:             d = v* 𝑡2  and then: 

𝑡2  =  𝑡2
′ + 𝑡2

′′   =   
2 𝑙 𝑐

𝑐2 − 𝑐 𝑣 ∗  −2 𝑣 ∗2
                                                                                 (27)      

and 

    𝑑 =     
2 𝑙 𝑐𝑣 ∗

𝑐2 − 𝑐 𝑣 ∗  −2 𝑣 ∗2
                                                                                         (28)                      

 The light reflected by the L mirror towards the O1 mirror propagates towards the O1 mirror 

below the angle ε (Fig.10) and: 



sin ε = cos 2 α =
1 − 𝑡𝑔2𝛼

1 + 𝑡𝑔2𝛼
=  

c2 − (c − 2 v ∗)2

c2  +  (c − 2 v ∗)2
 =  

2  𝑣 ∗ (𝑐 − 𝑣 ∗)

𝑐2 − 2𝑐 𝑣 ∗  +2 𝑣 ∗2
                     (29)  

Therefore, the right-hand component on the speed of light which propagates towards O1 mirror is: 

𝑣′ =    𝑐 ·  𝑠𝑖𝑛 𝜀 =  
𝑐[𝑐2 − (𝑐 − 2𝑣 ∗)2]

𝑐2  +  (𝑐 − 2𝑣 ∗)2
    =    

2 𝑐 𝑣 ∗ (𝑐 − 𝑣 ∗)

𝑐2 − 2𝑐 𝑣 ∗  + 2 𝑣 ∗2
                                 (30) 

 

 Fig. 10 The AD wavefront touches the mirror L areas, in turn, between A and B. These areas determine the 

reflecting surface with the AB section. 

 The light travel time on the L-O1-L path (Fig. 9) to the level at which the light enters the 

interferometer towards the O2 mirror, consists of: 𝒕𝟏
′  towards (on AD), and 𝒕𝟏

′′ backwards (on the 

DC distance). 

 𝑡1 =  𝑡1
′ + 𝑡1

′′ 

 The component of the speed v, with which the mirror O1 moves in the direction of the L-

O1 arm, is equal to v*. 

From figure 9, can be written: 

  𝑐2𝑡′1
2 = (𝑙 +   𝑑 − 𝑣 ∗ t1

′ )2+v’2 t′1
2 

Therefore: 

𝑡1
′    =     

𝑙+ 𝑑

√𝑐2−𝑣′2
      +   𝑣∗

 



In this equation: 

√𝑐2 − 𝑣′2 = √(𝑐 + 𝑣′)(𝑐 − 𝑣′) =     
  𝑐2 (𝑐 −2𝑣∗)

𝑐2−2𝑐 𝑣∗ + 2 𝑣∗2 

Therefore, 𝒕𝟏
′  can be known after replacing d and the radical: 

𝑡1
′   =      

𝑙(𝑐 + 2 v ∗)(𝑐2 − 2𝑐 𝑣 ∗  + 2 𝑣 ∗2)

(𝑐2 − 2𝑣 ∗2)(𝑐2 − 𝑐 𝑣 ∗  −2 𝑣 ∗2)
                                                                   (31)   

The light reflected by the moving O1 mirror falls towards the L mirror at an angle ε' (Fig.11)  

 

                   Fig. 11 The AC wavefront successively touches the areas of the O1 mirror, between A and B. The 

surface with section AB reflects the light towards the mirror L. 

 

For this angle ε′ = ε − 2𝜓′ the calculations shall be carried out no different than for the case 

illustrated in figure 6, except that the component v* appears in the new calculations. 

𝑠𝑖𝑛 𝜀′=     
(𝑐2−𝑣∗2)𝑠𝑖𝑛𝜀

𝑐2+𝑣∗2+2𝑐𝑣∗·𝑐𝑜𝑠 𝜀
 

By replacing the known sine and the cosine calculated as bellow: 

cos ε = √1 − sin2ε = √(1 − sin ε)(1 + sinε)   =
𝑐(𝑐 − 2𝑣∗)

𝑐2− 2𝑐𝑣∗ + 2 𝑣∗2 



We obtain: 

 

 𝑠𝑖𝑛 𝜀′= 
2𝑣∗(𝑐 + 𝑣∗)

𝑐2+ 2𝑐𝑣∗ + 2 𝑣∗2                                                                             (32) 

Thus, the right-hand component of the speed of light that travels towards L, is: 

 v” = c𝑠𝑖𝑛 𝜀′=
2𝑐𝑣∗(𝑐 + 𝑣∗)

𝑐2+ 2𝑐𝑣∗ + 2 𝑣∗2                                                                    (33) 

The equation containing the 𝒕𝟏
"  can be concluded from Figure 11: 

  𝑐2𝑡′′1
2 = ( 𝑙 +   𝑑 − v ∗ t1

′ )2+ v’’2t′′1
2             therefore: 

𝑡1
′′   =     

𝑙+ 𝑑− v∗t1
′

√𝑐2−𝑣′′2
                                    but here: 

√𝑐2 − 𝑣′′2 = √(𝑐 + 𝑣′′)(𝑐 − 𝑣′′) =
𝑐2(𝑐 + 2𝑣∗)

𝑐2+ 2𝑐 𝑣∗ + 2 𝑣∗2 

therefore, after replacing d, the radical, and performing the calculations: 

 𝑡1
′′ =  

𝑙(𝑐 − 2𝑣∗)(𝑐2+ 2𝑐𝑣∗ + 2 𝑣∗2)

(c2− 2v∗2  )(𝑐2−  𝑐𝑣∗ − 2 𝑣∗2 )
                                                (34)                     and: 

𝑡1=𝑡1
′ +  𝑡1

”= 
𝑙(𝑐 +2 𝑣∗)(𝑐2−2𝑐 𝑣∗ + 2 𝑣∗2)

(𝑐2−2𝑣∗2)(𝑐2−𝑐 𝑣∗ −2 𝑣∗2)
 +  

𝑙(𝑐 − 2𝑣∗)(𝑐2+ 2𝑐 𝑣∗ + 2 𝑣∗2)

(c2− 2v∗2  )(𝑐2−  𝑐 𝑣∗ − 2 𝑣∗2)
  =     

    =
2 𝑙 𝑐

𝑐2−𝑐 𝑣∗ −2 𝑣∗2                                                                                        (35) 

Obviously:                𝑡1 = 𝑡2            therefore   Δt = 0 

Figure 9 shows that the axis of the light beams are separated at point A of the mirror L and overlap 

at point C. Distance AC = 2d. This shall be clearly verified if the following calculation is per-

formed: 

𝑣′𝑡1
′   +  v” 𝑡1

′′=  
2 𝑐𝑣∗(𝑐−𝑣∗)

𝑐2−2𝑐𝑣∗ + 2 𝑣∗2

𝑙(𝑐 +2 v∗)(𝑐2−2𝑐 𝑣∗ + 2 𝑣∗2)

(𝑐2−2𝑣∗2)(𝑐2−𝑐 𝑣∗ −2 𝑣∗2)
  +     

 

            + 
2𝑣∗(𝑐 + 𝑣∗)

𝑐2+ 2𝑐𝑣∗ + 2 𝑣∗2

𝑙(𝑐 − 2𝑣∗)(𝑐2+ 2𝑐𝑣∗ + 2 𝑣∗2)

(c2− 2v∗2  )(𝑐2−  𝑐𝑣∗ − 2 𝑣∗2)
 =   

4 𝑙 𝑐𝑣∗

𝑐2−𝑐 𝑣∗ −2 𝑣∗2 =2 d 

 The angle that the two beams form is null.  The light coming from the O2 mirror is reflected 

by the moving semi-silvered mirror L, at an angle β measured against the L-O1 interferometer 

arm (Fig.12), as well as the angle 𝛆′ 



 

              Fig. 12 The wavefront coming from the O2 mirror reaches the sections of the L mirror between A and B. 

These sections determine the surface that reflects light towards the light detector. Mirror L reflects light coming from 

O2 under the angle β with the L-O1 interferometer arm. 

 β=  2𝜓                               of figure 12 

because the rotation of the mirror at the angle 𝜓attracts the rotation of the reflected beam by 2𝜓.   

Therefore:   

 sin β = sin 2 ψ                                                                                                                           (36) 

Figure 12 also shows that: 

 sin (45 –𝜓) =
𝑐 𝜃

𝐴𝐵     
          and       sin 𝜓=

𝑣 𝜃

𝐴𝐵     
 

and by division: 

 
𝑠𝑖𝑛 (45 – 𝜓 )

 𝑠𝑖𝑛 𝜓  
 =     

𝑐 

𝑣     
                 and by expansion: 

 c sin𝜓 =v  sin 45    cos 𝜓--  v  sin𝜓   cos45     

By dividing with cos 𝝍 and after performing numerical calculations considering that 

𝑣  =   𝑣 ∗ √2                      , the following shall be obtained: 

𝑡𝑔 𝜓 =     
𝑣 ∗

𝑐 +   𝑣 ∗
 



hence: sin β = sin 2 𝜓=  
2𝑡𝑔 𝜓

1 +  𝑡𝑔2𝜓
 =

2𝑣∗(𝑐 + 𝑣∗)

𝑐2+ 2𝑐𝑣∗ + 2 𝑣∗2=𝑠𝑖𝑛 𝜀′  

 

sin β =  𝑠𝑖𝑛 𝜀′                                                                                                                                                                                      (37) 

therefore, the angle between the axis of the two light beams coming from O1 and O2 and inter-

feres, is null, i.e., the two beams overlap perfectly. 

 

PART II 

THE MICHELSON-MORLEY EXPERIMENT FOLLOWED FROM ITS OWN REFER-

ENCE SYSTEM, LINKED TO THE INTERFEROMETER (SYSTEM SP) 

  

The distance that light travels from source S to a point P is measured from where S was located 

when it emitted light, to where P is located when the light reached it. If P moves away from where 

S was located, implies that the place where S was located also moves away from P. The source S 

location, at the moment of emitting light, can be seen from point P, although S is no longer there. 

Similar phenomena occur in many situations and, of course, in a Michelson interferometer. 

 

II. 1 THE MICHELSON INTERFEROMETER BEFORE ROTATION 

 

 From the interferometer observer system of reference (SYSTEM SP), the places where the 

optical phenomena occur travel to the left at a speed v. 

 The first section of the L mirror reached by the initial wavefront is A, and after, time 𝜽, the 

last being B (Fig. 13). Within this time frame, from the interferometer observer system  of refer-

ence t (SYSTEM SP), the place where the first elementary waves (A) were emitted, moved to the 

left on the distance v𝜽, away from the mirror L (in D).For the observer on the SP system, the first 

secondary waves were emitted from D. The other secondary waves are emitted by the sections of 

the L mirror touched by the incident wavefront between D and B. The tangent to these secondary 

waves determines the wavefront reflected towards the O1 mirror. 

 The angle between the axis of this beam and the L-O1 interferometer arm, is  𝜀 = 2𝜓 



 

Fig. 13 While the AE wavefront propagated to the CB position, the A point on the L mirror where the first elementary 

waves were emitted, moved to the left on the distance AD. The light from A, reaching point C, is seen by the observer 

in the reference SP system, as coming from D. The BFE reflected wavefront is tangent to the elementary wave emitted 

from D and therefore the reflecting surface has the DB section. 

From the BCD triangle, results: 𝜓= 𝛼 − 45                   therefore: 

𝑠𝑖𝑛𝜀 = − 𝑐𝑜𝑠2 𝛼          but: 

𝑡𝑔 𝛼 =
𝑐

𝑐 − 𝑣
 

In which case: 𝑠𝑖𝑛𝜀 =
𝑐2−(𝑐−𝑣)2

𝑐2 + (𝑐−𝑣)2
       as for the reference system considered stationary (SYS-

TEM S)   

The component of the light speed reflected towards the mirror O1, on the L-O2 arm direction, is: 

𝑣’ =  𝑐 ·  𝑠𝑖𝑛 𝜀  =     
𝑐[𝑐2−(𝑐−𝑣)2]

𝑐2 + (𝑐−𝑣)2  

From its own reference system, each location through which light passes on distance A - B - C 

(shown in Figure 14) moves to the left at a speed v. Therefore, the observed path has the shape 

shown in Figure 14. Regardless of the displacements observed in the direction of the L-O2 arm, 

from the interferometer observer system of reference, the component of the speed of light in the 

direction of the L-O1 arm remains the same:  𝒄 · 𝒄𝒐𝒔 𝜺 

The light travel time on the L-O1-L path of the interferometer can be calculated from the equation:  

𝑐 𝑡1 · 𝑐𝑜𝑠 𝜀 = 2𝑙 



And the result is: 𝑡1 =  
𝑙[𝑐2+(𝑐−𝑣)

2
]

𝑐2(𝑐−𝑣)
   of the same value as for the stationary system observer 

(SYSTEM S)  

 

             Fig. 14. Each point where the light passes undergoes a left-hand displacement at the speed 𝑣. The shape of 

the path is as shown in the figure. When the light reached O2 in D, the starting point A, moved to E. In fact, the light 

travelled the distance ED. When the light touches the mirror L in A, point D moves to F. The light reflected by the 

mirror O1 falls in C. But 𝑡2>𝑡1 therefore, when the light from O2 reaches A, point C has moved to G. 

The L-O2-L path is travelled during the time 𝑡2 =  𝑡2′ +  𝑡2
′′   i.e., 𝒕𝟐′ going forward and 𝒕𝟐

′′ on the 

backward journey. After time 𝒕𝟐′ the light reaches the O2 mirror, in point D, and in the emitting 

point A, has moved to the left on the distance AE = 𝑣 · 𝑡2′ The light has travelled the distance   

   𝑣 ·   𝑡2′ + 𝑙       therefore: 𝑐𝑡2′ = 𝑣 · 𝑡2′ + 𝑙    resulting:      𝑡2′ = 
𝑙

𝑐−𝑣
 

After time 𝒕𝟐
′′    the light reaches the mirror L in point A. The emitting point D, is moving to the left 

in point F and  DF=𝒗 · 𝑡2′′   Therefore: 

𝑐𝑡2′′   = 𝑙 − 𝑣 · 𝑡2′′           Hence:  𝑡2′′   = 
𝑙

𝑐+𝑣
      It implies that: 𝑡2 =  𝑙

𝑐−𝑣
+ 𝑙

𝑐+𝑣
= 2𝑙𝑐

𝑐2−𝑣2 

Therefore:  ∆𝑡    =   
𝑙𝑣2

𝑐2(𝑐+𝑣)
      as for the stationary reference system (SYSTEM S)  

𝒕𝟐>𝒕𝟏 therefore, until the light from O2 reaches the mirror L in point A, the point reached by the 

light from O1 at the level of  L-O2 arm, is moving to the left with:  𝒗∆𝒕 



The distance between the axis of the reflected beams is calculated as follows: 

(𝑣′ − 𝑣)𝑡1  =  𝑥 + 𝑣∆𝑡       therefore:        𝑥  =      
𝑙𝑣2

𝑐(𝑐+𝑣)
 

The same distance x has also been measured against the reference system considered stationary 

(SYSTEM S). 

II.2 THE INTERFEROMETER ROTATED BY 90° 

The observer in the reference system linked to the interferometer (SYSTEM SP) find that in the 

areas where the optical phenomena occur, the direction of the L-O1 is moved away towards O1 

(in reverse to the movement detected by the stationary observer). As a result, the rotating effect of 

the mirrors will also occur against the interferometer system. The theory that the light propagates 

independently, is recalled. 

𝜀 = 2𝜓 

From figure 15, shall be noted: 

𝜓 = 𝛼 − 45        therefore: 

𝑠𝑖𝑛𝜀 = − 𝑐𝑜𝑠2 𝛼        but:         𝑡𝑔 𝛼 = 𝑐
𝑐−𝑣

 

Hence:     𝑠𝑖𝑛𝜀 =
𝑐2−(𝑐−𝑣)2

𝑐2 + (𝑐−𝑣)2
          as for the stationary reference system

 

              Fig. 15 While the initial wavefront ADG reaches the CEB position, zone A on the L mirror, where the 

first elementary waves were emitted from, moves on the distance AD. The surface reflecting the light towards the 

mirror O1 has the section passing through D and B. The reflected GB wavefront propagates in the AF direction. 



On the L-O1 arm direction, the component of the light speed reflected by the L mirror towards 

O1, is: 𝐜 𝒄𝒐𝒔 𝛆. 

 The first section of the O1 mirror touched by the wavefront coming from L, is A (Fig. 16). 

After time 𝜽, the light reaches the B section of the O1 mirror. Meanwhile, from the interferometer 

observer system  of reference, it is found that point A, where the first secondary wave was emitted, 

moved with AC =  𝑣𝜃 and the secondary wave with CE = 𝒄 𝜽 . The surface that reflects the light 

has the CB section and is rotated towards the O1 mirror at an angle 𝝍′. The light sent to the mirror 

L together with the L-O1 arm, forms the angle 𝛆′. The light speed component parallel to the L-O1 

arm is: 𝒄 𝒄𝒐𝒔 𝛆′ 

 

         Fig.16 While the AD incident wavefront reaches the O1 mirror in point B, the center of the first elementary 

wave A moves to point C, and the the AD front in the position CF. The Light from point D, reaching point B, is seen 

by the observer in the SP system as coming from F. Therefore, the reflecting surface passes through C and B.       

From the congruent BCE and BCF triangles, shall result: 

𝜀 − 𝜓′ = 𝜀′ + 𝜓′     therefore      ε′ = ε − 2𝜓′                     but: 

𝑠𝑖𝑛𝜓′ =
𝑣𝜃

𝐵𝐶
        𝑎𝑛𝑑            𝑠𝑖𝑛 (𝜀 − 𝜓′) =

𝑐𝜃

𝐵𝐶
     therefore     

𝑠𝑖𝑛 𝜓′

𝑠𝑖𝑛(𝜀 − 𝜓′)
=

𝑣

𝑐
 

These are the same relationships as in the reference system considered stationary (SYSTEM S) 

Therefore: 



sin ε‘ =
(2𝑐𝑣−𝑣2)(𝑐2−𝑣2)

2𝑐4+2𝑐3𝑣−𝑐2𝑣2−2𝑐𝑣3+𝑣4     and        𝑐𝑜𝑠 𝜀′  =
2𝑐2(𝑐2+𝑐𝑣−𝑣2)

2𝑐4+2𝑐3𝑣−𝑐2𝑣2−2𝑐𝑣
3

+𝑣4
 

From the interferometer observer system of reference, the light beams propagate as shown in Fig-

ure 17. 

 The light time travel on the L-O2-L distance, is 𝝉𝟐. 

 The displacements of event locations in the direction of the L-O1 arm do not affect the 

components of light speed in the perpendicular direction L-O2. The component of the light speed, 

in the L-O2 direction is exactly 𝒄, because this direction it is emitted by the light source. Therefore: 

𝜏2 = 2𝑙+𝑑
𝑐

       and         d=v·𝜏2     therefore:    𝜏2 = 2𝑙
𝑐−𝑣

     and   d=
2𝑙𝑣

𝑐−𝑣
 

As for the reference system considered as stationary. 

 

                           Fig. 17 Shows the propagation directions of the light beam fronts reflected by the interferometer. 

AC is the distance point A moves on, until the reflected light reaches the O1 mirror. Point B is moving on the distance 

E-F until the light reaches the level of the L-O2 arm. 

The 𝝉𝟏
′   light travel time on distance L-O1, is calculated as follows: 

𝜏1 
 ′  c 𝑐𝑜𝑠 ε = 𝑙 + 𝑑 − 𝑣𝜏1

′      resulting:         𝜏1
′ =

𝑙(𝑐+𝑣)[𝑐2+(𝑐−𝑣)
2

]
(𝑐−𝑣)(2𝑐3−2𝑐𝑣2+𝑣3)

 

The 𝝉𝟏
′′ light travel time on distance O1-L, is found in the equation bellow: 



c 𝑐𝑜𝑠 𝜀′ 𝜏′′1 = (l+d−v𝜏1
′ )+ 𝑣  𝜏′′1    i.e.     𝜏1

′′= 
𝑙(𝑐+𝑣)(2𝑐4+2𝑐3𝑣−𝑐2𝑣2−2𝑐𝑣3+𝑣4)

𝑐(𝑐2+𝑐𝑣−𝑣2)(2𝑐3−2𝑐𝑣2+𝑣3)
 

𝜏1 = 𝜏1
′ + 𝜏1

′′ =
𝑙(𝑐+𝑣)(2𝑐2−𝑣2)

𝑐(𝑐−𝑣)(𝑐2+𝑐𝑣−𝑣2)
            represents the time the light travels the path L-O1-L 

The time difference is expressed by: ∆𝜏 = − 𝑙𝑣
2

𝑐(𝑐
2

+𝑐𝑣−𝑣2)
 

The distance between the beams axis is: 𝑥′ = 𝑑 − 𝑣′𝜏1
′  − 𝑣′′𝜏1

′′ =  𝑙𝑣
2

𝑐2+𝑐𝑣−𝑣2    as in the refer-

ence system considered stationary. 

 

II. 3 THE INTERFEROMETER ROTATED BY 45° 

The observer in the SP system finds that the points where optical events occur move at a speed v, 

at an angle of 45°, with the L-O2 arm counterclockwise (directly trigonometric). Analysis and 

calculations can be performed similarly to those of the interferometer rotation by 90°, using the 

component 𝑣 ∗=   𝑣
√2

 

The path shape observed from SP system is the one shown in figure 18.  

 

                     Fig. 18 The light beams reflected by the mirrors overlap perfectly in the center of the L mirror. 



 The light beams travel the arms of the interferometer in intervals equal to those determined 

from the system considered stationary. The angle between the axis of the beams is null. 

 

 

 

CONCLUSIONS 

 

 In the Michelson-Morley experiment, the interference fringes should not move when rotat-

ing the interferometer, because the causes that would move them give reverse effects and cancel 

out. Under the theory that light is not driven by the medium where the interferometer is located, 

changes in the travel times through the interferometer arms and the additional rotations of the 

mirrors due to their movement with the Earth generate reverse effects on the interference fringes, 

which is proven to be experimental. The area of interference is described by Δt values (the light 

beams travel time difference through the interferometer arms), angle between the beams and x 

(distance between the axis of the interfering light beams), which we periodically retrieve during 

interferometer rotation and for which the fringes remain stationary.  

 If the medium drives the light, then the analyses and calculations are performed differently, 

but in full accordance with the experimental result.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 


